TRM Current Sensor VS Hall Sensor

2024-10-18 17:44:55 1407

Current sensors, as important components in power systems and electronic equipment, play a key role in measuring the current in circuits. They convert current signals into output signals that are proportional to them, thus realizing current monitoring, control and protection. Among current sensors, TRM (Tunnel Magneto-Resistance) current sensors and Hall sensors are two common types, which have certain differences in their operating principles, performance characteristics and application scenarios.

 

TRM Current Sensor

A TRM sensor is a magnetically sensitive element that utilizes the tunneling magnetoresistance effect. The tunneling magnetoresistance effect is that when the external magnetic field changes, it causes the resistance of the TRM sensor to change, thus realizing the measurement of current. As the fourth generation of magnetic sensor application technology, TRM sensors have made significant improvements in performance.

High accuracy and high sensitivity: TRM sensors are characterized by high accuracy and high sensitivity, enabling them to maintain stable measurement accuracy in both weak and strong current environments. This gives TRM sensors a clear advantage in applications where high accuracy measurements are required.

Low power consumption and small size: TRM sensors with low power consumption and small size can be made into a variety of high sensitivity magnetic sensors for applications with strict space requirements. In addition, the low power consumption characteristics also make it outstanding in applications with long working hours.

Good temperature stability: TRM sensors have excellent temperature stability and can maintain stable measurement performance over a wide operating temperature range. This makes TRM sensors more reliable for applications in harsh environments.

Wide range of applications: TRM sensors have a wide operating range and high resolution, and can be used in a variety of power systems and electronic equipment, such as current measurement in high-power power supply applications.

 

Hall Sensors

Hall sensors, on the other hand, are a type of magnetic field sensor based on the Hall effect. Hall effect is a kind of magnetoelectric effect, when the current through the conductor and placed in the magnetic field, will produce a potential difference between the two sides of the conductor, this phenomenon is known as the Hall effect, the resulting potential difference is called Hall voltage.

Non-contact measurement: Hall sensor adopts non-contact measurement method, avoiding the problems of poor contact and contact resistance in traditional current measurement, improving the reliability and accuracy of measurement.

High accuracy and linearity: Hall sensors have high accuracy and good linearity, and can accurately convert current signals into output voltage signals. This makes Hall sensors widely used in electronic equipment and communication equipment.

Widely applicable: Hall sensors can be used to measure both DC and AC currents, making them suitable for a variety of current measurement needs. In addition, Hall sensors can be used to measure magnetic fields, as well as the physical quantities that generate and affect magnetic fields, such as position measurement and speed measurement.

Strong environmental adaptability: Hall sensors have strong environmental adaptability and can work properly in harsh environments. For example, in some brushless DC motors, Hall sensors are used to detect the position of permanent magnets and realize the electronic phase change of the motor.

 

Comparison between TRM and Hall sensors

Accuracy and Sensitivity: TRM sensors are superior to Hall sensors in terms of accuracy and sensitivity.TRM sensors have higher magnetic field sensitivity and are able to measure weak and strong currents more accurately. While Hall sensors also have high accuracy and good linearity, they are slightly less sensitive to magnetic fields.

Power consumption and size: TRM sensors have the advantages of low power consumption and small size, which makes it more advantageous in some of the strict space and power consumption requirements of the occasion. In contrast, Hall sensors may be slightly larger in power consumption and size, but are still within acceptable limits.

Temperature Stability: TRM sensors have better temperature stability and are able to maintain stable measurement performance over a wide operating temperature range. This is especially important for applications that require operation in harsh environments. Hall sensors also have a certain degree of temperature stability, but in comparison, slightly inferior to TRM sensors.

Application Scenarios: TRM sensors and Hall sensors are different in application scenarios; TRM sensors are more suitable for applications that require high accuracy and sensitivity measurements, such as current measurements in high power supply applications. Hall sensors, on the other hand, are widely used in electronic and communications equipment to measure current, magnetic fields, and the physical quantities that generate and affect magnetic fields.

Cost: In terms of cost, TRM sensors and Hall sensors vary in price depending on factors such as brand, model and performance. In general, TRM sensors may be slightly higher in cost than Hall sensors due to their high accuracy and sensitivity. However, the price difference between the two is gradually narrowing as technology continues to advance and market competition intensifies.

 

Conclusion

TRM current sensors and Hall sensors each have their own advantages in current measurement.TRM sensors, with their high accuracy, high sensitivity, low power consumption and small size, have obvious advantages in applications requiring high-precision measurements; while Hall sensors, with their non-contact measurements, high accuracy, good linearity, and a wide range of applications, have been widely used in electronic equipment and communication devices. When choosing a current sensor, the appropriate sensor type should be selected according to the specific application requirements and working environment.

Tags:

Share

Related News more>

Elliptic Labs' AI platform optimized for Ceva NeuPro-Nano NPU to enable smarter edge devices
Elliptic Labs, a global leader in AI software with over 500 million AI Virtual Smart Sensors™ deployed in devices, and Ceva, a leading global semiconductor product and software IP licensing company that helps smart edge devices connect, sense, and infer data more reliably and efficiently, have announced a collaboration to bring Elliptic Labs' AI Virtual Smart Sensor Platform™ to Ceva's cutting-edge NeuPro-Nano neural processing unit (NPU). perceive, and infer data, Ceva, a global leader in semic....
EP2C20F484I8N FPGAs: Features, Applications and Datasheet
EP2C20F484I8N Description The EP2C20F484I8N is a high-performance, low-power Cyclone® II FPGA housed in a 484-pin FineLine BGA package. Built on a 90 nm process node, this device provides an optimal balance of cost-efficiency and logic density, making it ideal for complex programmable logic designs in cost-sensitive embedded applications. Its I-temperature rating (industrial) ensures reliable operation across extended temperature ranges. EP2C20F484I8N Features Logic Elements (LEs): 20,060 LEs for exte....
How to Accurately Measure Power Supply Ripple Noise: Probe Selection, Grounding, and Bandwidth Tips
A user was testing the ripple of a 5V signal output from a switching power supply using an oscilloscope with a 500MHz bandwidth. They found that the peak-to-peak value of the ripple and noise reached over 900mV (as shown in the figure below), while the switching power supply's specified peak-to-peak ripple value was
IAR Development Platform Upgrades Arm and RISC-V Development Toolchains to Accelerate Modern Embedded System Development
Uppsala, Sweden, June 10, 2025 — IAR, a global leader in embedded software solutions, has officially released major updates to its flagship products: Arm Development Toolchain v9.70 and RISC-V Development Toolchain v3.40. These updates significantly enhance the IAR Development Platform's capabilities in performance, security, and automation, enabling agile and scalable embedded applications across industries such as automotive, industrial, medical, and IoT. Figure 1 To address the growing complexity ....